На плоскости дано бесконечное множество точек S, при этом в любом квадрате 1 × 1 лежит конечное число точек из множества S. Докажите, что найдутся две разные точки A и B из S такие, что для любой другой точки X из S выполняется: |XA|,\;|XB| ≥ 0,999|AB|.
Докажем утверждение задачи от противного.
Можно предположить, что для любых двух разных точек A и B из S найдется отличная от них точка X из S такая, что либо XA < 0,999AB, либо XB < 0,999AB.
Переформулируем вышеприведенное утверждение: для любого отрезка I с концами в S и длиной l найдется отрезок I′ с концами в S длины не более 0,999l, один из концов которого совпадает с некоторым концом I.
Или, иначе говоря, I′ пересекает I.
Возьмем теперь первый отрезок I1 длины l и будем брать отрезки I2, I3, …так, что Ik + 1 пересекается с Ik и |Ik + 1| < 0,999|Ik|.
Все эти отрезки имеют концы в S. Ломаная не короче отрезка, соединяющего ее концы, поэтому расстояние от любого конца Ik до любого конца I1 не превосходит
Следовательно, в квадрате 2000l × 2000l с центром в любом из концов I1 лежит бесконечное число точек S.
Но из условия следует конечность их числа в любом квадрате.
Полученное противоречие завершает доказательство.
Объяснение: