Знайти рішення тичної до графіка функції f(x)=3x+6/3-x2 в т перетину з віссю абцис

Viktoria12311 Viktoria12311    1   08.09.2020 01:11    0

Ответы
538VICTORIA8425 538VICTORIA8425  15.10.2020 18:39

Дана функция y = (3x + 6)/(3 - x²).

Её производная равна y' = 3(x² + 4x + 3)/((3 - x²)²).

Находим ноль функции. 3x + 6 = 0,  х = -6/3 = -2.

y'(-2) = 3*((-2)² + 4*(-2) + 3)/(3 - (-2)²) = (3*(4 - 8 + 3))/(3 - 4) = -3.

y(-2) = (3*(-2) + 6)/(3 - (-2)²) = (-6+6)/(-1) = 0.

Уравнение касательной в точке х = -2.

у(кас) = -3*(x - (-2)) + 0 = -3x - 6.

ответ: у(кас) = -3x - 6.


Знайти рішення тичної до графіка функції f(x)=3x+6/3-x2 в т перетину з віссю абцис
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика