a) x/4=Пk
x=4Пk
b) 2sinx/2cosx/2-cosx/2=0
cosx/2=0
x/2=П/2+Пk
x=П+2Пk
2sinx/2=1
sinx/2=1/2
x/2=(-1)^kП/6+Пk
x=(-1)^kП/3+2Пk
2) lim(x->0) 2sinxcosx/sinx=2lim(x->0)cosx=2
2) Lim (sin2x/sinx)=Lim (2cos2x/sinx)=2(Lim (cos2x)/cosx)=2(Lim cos2x)=2cos(2(Limx))=2
a) x/4=Пk
x=4Пk
b) 2sinx/2cosx/2-cosx/2=0
cosx/2=0
x/2=П/2+Пk
x=П+2Пk
2sinx/2=1
sinx/2=1/2
x/2=(-1)^kП/6+Пk
x=(-1)^kП/3+2Пk
2) lim(x->0) 2sinxcosx/sinx=2lim(x->0)cosx=2
2) Lim (sin2x/sinx)=Lim (2cos2x/sinx)=2(Lim (cos2x)/cosx)=2(Lim cos2x)=2cos(2(Limx))=2