Задание по теме «Конус»
1) Изобразите конус. По рисунку определите все элементы конуса.
2) По заданной модели конуса постройте развертку этого конуса. Определите соответствие элементов развертки конуса, чертежа и модели конуса.
3) Из листа плотной бумаги изготовить конус, чтобы его полная поверхность: S 110 см2 при радиусе основания r 3.1 см.
Определите какие инструменты вам для этого понадобятся, какие расчеты необходимы сделать, какие формулы придется вспомнить, а какие вывести новые?
4) Оформите работу на месте по плану:
А) Какие у вас распределились обязанности в группе в процессе выполнения заданий:
• генератор идей;
• конструктор;
• расчетчик;
• оформитель;
• изготовитель.
Б) Опишите и подходы к решению задачи.
• Необходимые расчеты для изготовления модели конуса. (Чертеж. Формулы. Вывод)
• Изготовление конуса.
5) Модель конуса готова.
6) Составьте формулу для расчета площади сечения, параллельного основанию конуса и делящего высоту конуса в отношении 1:3, считая от вершины
7) Составьте формулу для расчета площади сечения, проходящего через ось конуса. Чему равен угол при вершине данного сечения?
8) Каким образом можно из вашей модели получить усеченный конус? Рассчитать его полную поверхность используя задания (6).
9) Составьте и решите еще три задачи на данную тему.
Замечание: учитель выступает в роли консультанта при решении задач, пользуясь во подсказками и опираясь на ключевые слова.
Одной из групп были даны более легкие задания:
№1. Заполнить пропуски:
1. Прямая, которая при движении образует коническую поверхность, называется…;
2. Линия, которую пересекает образующая, называется…..;
3. Конус вращения - частный случай…, когда основание конуса - .., а основание высоты - ..;
4. Сечение конуса вращения плоскостью, параллельной основанию, - …. Найдите площадь сечения.
5. Если осевое сечение конуса- равносторонний треугольник, то конус…..Сделать чертеж:
№2. Решите задачу, заполняя пропуски.
В развертке боковой поверхности конуса центральный угол равен 200o. Найти угол между образующей и основанием конуса.
Дано: ВSB=200o, SA=L, ОВ=r
Найти SAO
Решение:
1) a=360o…..| cos x=…
2) 200o=…
3) cos x=… , x -
А) … образующей;
Б) … направляющей;
В) …конус, …. Круг…, центр основания
Г) …круг, …расстояния сечения от вершины конуса;
Д) … называется равносторонним
4)
А)
Б) 200o = 360o*cos x;
В)
№3 В конусе проведено сечение плоскостью, проходящей через вершину конуса. Найти его площадь, если радиус конуса r, угол между образующей и основанием 450.
ответ:
На следующем уроке заслушать выступление групп по работе, разрешить спорные во послушать составленные задачи и решить их. Сохранить изготовленные конусы для изучения темы: «Объем конуса».
Задание на дом.
Изучить усеченный конус, решить задачи №
Итог урока.
• В результате работы ученики
• Сами вывели формулы для вычисления боковой и полной поверхностей конуса
• Нарисовали развертку
• Сделали необходимые расчеты
Группы L(см) R (см) Sосн = R2 S бок= RL Sполн= Sбок+ Sосн
1 9,2 3,1 21,1754 89,5528 110,7282
2 7,8 3 28,26 73,476 101,74
3 9,4 3 28,26 88,548 116,808
4 10,4 4,9 75,3914 160,0144 235,4058
• Провели исследовательскую работу,
• Решили задачи,
• Постоянно общались между собой, учились мыслить и мотивировать своих товарищей по работе.
• Получили не только необходимые знания, но и большое удовольствие.
• Выяснили, что слово «Конус» произошло от греческого слова «xwnos», что означает шишка.