Задача 1. Вычислить определенный интеграл методом замены переменной с точностью до двух знаков после запятой.
Вариант 18
Задача 2. Вычислить определенный интеграл методом интегрирования по частям с точностью до двух знаков после запятой.
Задача 3. Вычислить определенный интеграл с точностью до двух знаков после запятой, выделяя в знаменателе полный квадрат. Вариант 18
Задача 4. Вычислить площадь фигуры, ограниченной графиками функций:
Вариант 18
Решение.
Находим точки пересечения графиков функций:
Вариант 18 Вариант 18
Задача 5. Вычислить площадь фигуры:
Решение.
Вариант 18
Вариант 18
Задача 6. Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями в полярных координатах.
Вариант 18
Задача 7. Вычислить длину дуги кривой:
Решение.
Задача 8. Вычислить длину дуги кривой:
Вариант 18; Вариант 18
Решение.
Вариант 18
Вариант 18
Задача 9. Вычислить длину дуги кривой:
Вариант 18; Вариант 18
Решение.
Задача 10. Вычислить объём тела, ограниченного поверхностями Вариант 18, Вариант 18,
Решение.
Имеем тело (гиперболоид) с сечениями параллельно XOY, зависящими только от Z:Вариант 18.
Значит, объем тела:
Сечение, перпендикулярное оси OZ – эллипс:
Площадь эллипса:
Вариант 18
Задача 11. Вычислить объем тела, образованного вращением фигуры, ограниченной графиками функций. Ось вращения OY.
Решение: Объем тела, образованного вращением фигуры, ограниченной графиками функций, есть разность объемов тел, образованного вращением фигуры, ограниченной графиками функций Вариант 18 и
Найдем координаты границ тел по оси OX:
Значит, объем тела
Задача 12. Найти координаты центра масс плоской однородной фигуры Ф, ограниченной первой аркой циклоиды: Вариант 18 и осью Ох.
Находим границы фигуры Ф:
Вариант 18
Вариант 18
Задача 13. Найти момент инерции эллипса Вариант 18 относительно оси Oy.
Решение: Воспользуемся симметричностью эллипса относительно осей координат. Рассмотрим четверть эллипса Вариант 18.
Вариант 18
Слишком сложное решение для первого курса. Возможно опечатка.
Задача 14. Вычислить несобственные интегралы или доказать их расходимость:
А)
Подынтегральная функция определена и непрерывна при Вариант 18. Значит, несобственный интеграл:
Вариант 18
Несобственный интеграл расходится.
Б)
Подынтегральная функция определена и непрерывна при Вариант 18 и Вариант 18 При Вариант 18. Значит, несобственный интеграл:
Вариант 18
Задача 15. Исследовать сходимость интеграла от неотрицательной функции:
Подынтегральная функция определена и непрерывна при Вариант 18 .
Оценим подынтегральную функцию при Вариант 18:
Следовательно:
Поскольку интеграл Вариант 18 сходится, то по признаку сравнения сходится исходный несобственный интеграл.
Пошаговое объяснение:
Братан, мне кажется тебе никто не решит уже, вот я скинул весь вариант, надеюсь ,удачи)
Вариант 18
Задача 1. Вычислить определенный интеграл методом замены переменной с точностью до двух знаков после запятой.
Вариант 18
Задача 2. Вычислить определенный интеграл методом интегрирования по частям с точностью до двух знаков после запятой.
Задача 3. Вычислить определенный интеграл с точностью до двух знаков после запятой, выделяя в знаменателе полный квадрат. Вариант 18
Задача 4. Вычислить площадь фигуры, ограниченной графиками функций:
Вариант 18
Решение.
Находим точки пересечения графиков функций:
Вариант 18 Вариант 18
Задача 5. Вычислить площадь фигуры:
Решение.
Вариант 18
Вариант 18
Задача 6. Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями в полярных координатах.
Вариант 18
Задача 7. Вычислить длину дуги кривой:
Решение.
Задача 8. Вычислить длину дуги кривой:
Вариант 18; Вариант 18
Решение.
Вариант 18
Вариант 18
Задача 9. Вычислить длину дуги кривой:
Вариант 18; Вариант 18
Решение.
Задача 10. Вычислить объём тела, ограниченного поверхностями Вариант 18, Вариант 18,
Решение.
Имеем тело (гиперболоид) с сечениями параллельно XOY, зависящими только от Z:Вариант 18.
Значит, объем тела:
Сечение, перпендикулярное оси OZ – эллипс:
Площадь эллипса:
Вариант 18
Задача 11. Вычислить объем тела, образованного вращением фигуры, ограниченной графиками функций. Ось вращения OY.
Решение: Объем тела, образованного вращением фигуры, ограниченной графиками функций, есть разность объемов тел, образованного вращением фигуры, ограниченной графиками функций Вариант 18 и
Найдем координаты границ тел по оси OX:
Значит, объем тела
Задача 12. Найти координаты центра масс плоской однородной фигуры Ф, ограниченной первой аркой циклоиды: Вариант 18 и осью Ох.
Находим границы фигуры Ф:
Вариант 18
Вариант 18
Задача 13. Найти момент инерции эллипса Вариант 18 относительно оси Oy.
Решение: Воспользуемся симметричностью эллипса относительно осей координат. Рассмотрим четверть эллипса Вариант 18.
Вариант 18
Слишком сложное решение для первого курса. Возможно опечатка.
Задача 14. Вычислить несобственные интегралы или доказать их расходимость:
А)
Подынтегральная функция определена и непрерывна при Вариант 18. Значит, несобственный интеграл:
Вариант 18
Несобственный интеграл расходится.
Б)
Подынтегральная функция определена и непрерывна при Вариант 18 и Вариант 18 При Вариант 18. Значит, несобственный интеграл:
Вариант 18
Задача 15. Исследовать сходимость интеграла от неотрицательной функции:
Подынтегральная функция определена и непрерывна при Вариант 18 .
Оценим подынтегральную функцию при Вариант 18:
Следовательно:
Поскольку интеграл Вариант 18 сходится, то по признаку сравнения сходится исходный несобственный интеграл.
Пошаговое объяснение:
Братан, мне кажется тебе никто не решит уже, вот я скинул весь вариант, надеюсь ,удачи)