1)Т.к. sin²2a+cos²2a=1 , то
sin2a=√(1-cos²2a).
А также cos2a=1-2sin²a, то
sin2a=√(1-(1-2sin²a)²)=√(1-(-7/25)²)=√(576/625)=24/25.
2)cos2b=2cos²b - 1 =-119/169.
3)sin(a-b)=sinacosb-cosasinb=
=-4/13-√(1-sin²a)(1-cos²b)=
=-4/13-√(9/25)(144/169)=-4/13-(3/5)(12/13)=-56/65.
4)cos(a+b)=cosacosb-sinasinb=-5/13√(1-sin²a)-4/5√(1-cos²b)=(-5/13)(3/5)-(4/5)(12/13)=-63/65.
1)Т.к. sin²2a+cos²2a=1 , то
sin2a=√(1-cos²2a).
А также cos2a=1-2sin²a, то
sin2a=√(1-(1-2sin²a)²)=√(1-(-7/25)²)=√(576/625)=24/25.
2)cos2b=2cos²b - 1 =-119/169.
3)sin(a-b)=sinacosb-cosasinb=
=-4/13-√(1-sin²a)(1-cos²b)=
=-4/13-√(9/25)(144/169)=-4/13-(3/5)(12/13)=-56/65.
4)cos(a+b)=cosacosb-sinasinb=-5/13√(1-sin²a)-4/5√(1-cos²b)=(-5/13)(3/5)-(4/5)(12/13)=-63/65.