Вычислить площадь фигуры,ограниченной линиями : y= -x^2+4 , y=0

annayotubeanna annayotubeanna    3   25.03.2019 07:10    0

Ответы
kriskuziya0708 kriskuziya0708  26.05.2020 18:05

Точки пересечения линий:

-x^2+4=0\Rightarrow x^2=4\Rightarrow x=\pm2

Т.е. 2 точки - А(-2,0) и В(2,0).

Рисуете график - первый это парабола с вершиной в точке (0,4) и проходящая через точки А и В, график второй функции совпадает с осью ОХ.

Площадь фигуры - интеграл разности функций, пределы интегрирования - абсциссы точек их пересечения:

\int_{-2}^{2}(-x^2+4)dx=(-\frac{x^3}3+4x)|_{-2}^2=(-\frac83+8)-(\frac83-8)=\\=-\frac83+8-\frac83+8=16-\frac{16}3=\frac{48-16}3=\frac{32}3

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика