Тело, полученное вращением вокруг оси Ох фигуры, ограниченной гиперболой 9х²-25y²=225, прямой 3х-10у=0 и положительной полуосью Ох, представляет собой конус с выемкой в основании однополостного гиперболоида вращения . Находим координаты крайних точек. Подставляем переменную у в уравнение гиперболы из уравнения прямой. Прямая 3х-10у=0, у = 0,3х. Гипербола 9х²-25*0,09х²=225, х²(9 - 2,25) = 225, 6,75х² = 225, х = √(100/3) = 10/√3. Отрицательные значения в соответствии с заданием отбрасываем. Находим координаты вершины гиперболы, для этого преобразуем заданное уравнение гиперболы в каноническое: Гипербола 9х²-25y²=225. Разделим обе части на 225. (х²/25) - (у²/9) = 1. Отсюда имеем а = 5. Координаты вершины (5;0). Так как прямая 3х-10у=0 проходит через начало координат, то вершина конуса имеет координаты (0;0). Радиус основания конуса равен ординате точки пересечения гиперболы и прямой: у = 0,3*(10/√3) = √3. Площадь основания конуса So = πR² = π(√3)² = 3π. Объём конуса V = (1/3)SoH = (1/3)*3π*(10/√3) = 10π/√3 ≈ 18,13799. Объём гиперболической выемки равен интегралу: ≈ 3,5578. Объём тела равен (10π/√3) - ((10π(9-5√3)/3) ≈ 18,13799 - 3,5578 ≈ 14,58019 куб.ед.
Находим координаты крайних точек.
Подставляем переменную у в уравнение гиперболы из уравнения прямой.
Прямая 3х-10у=0, у = 0,3х.
Гипербола 9х²-25*0,09х²=225,
х²(9 - 2,25) = 225,
6,75х² = 225,
х = √(100/3) = 10/√3. Отрицательные значения в соответствии с заданием отбрасываем.
Находим координаты вершины гиперболы, для этого преобразуем заданное уравнение гиперболы в каноническое:
Гипербола 9х²-25y²=225. Разделим обе части на 225.
(х²/25) - (у²/9) = 1.
Отсюда имеем а = 5. Координаты вершины (5;0).
Так как прямая 3х-10у=0 проходит через начало координат, то вершина конуса имеет координаты (0;0).
Радиус основания конуса равен ординате точки пересечения гиперболы и прямой: у = 0,3*(10/√3) = √3.
Площадь основания конуса So = πR² = π(√3)² = 3π.
Объём конуса V = (1/3)SoH = (1/3)*3π*(10/√3) = 10π/√3 ≈ 18,13799.
Объём гиперболической выемки равен интегралу:
≈ 3,5578.
Объём тела равен (10π/√3) - ((10π(9-5√3)/3) ≈ 18,13799 - 3,5578 ≈ 14,58019 куб.ед.