АМ = МD -по условию ВМ = СМ - так как АМ - медиана ∠ВМА = ∠DМС как вертикальные ΔАМВ = ΔDMC - по 1-му признаку равенства треугольников Следовательно, АВ = CD и ∠АВМ = ∠DCM - эти углы накрест лежащие при прямых АВ и CD и секущей ВС.Значит, AB║CD. Если две стороны выпуклого четырёхугольника равны и параллельны, то этот четырёхугольник параллелограмм. Что и требовалось доказать.
ВМ = СМ - так как АМ - медиана
∠ВМА = ∠DМС как вертикальные
ΔАМВ = ΔDMC - по 1-му признаку равенства треугольников
Следовательно, АВ = CD и ∠АВМ = ∠DCM - эти углы накрест лежащие при прямых АВ и CD и секущей ВС.Значит, AB║CD.
Если две стороны выпуклого четырёхугольника равны и параллельны, то этот четырёхугольник параллелограмм. Что и требовалось доказать.