Втреугольнике авс известны стороны ав=7, вс=10, ас=8. окркжность, проходящая через точки а ис, пересекает прямые ва и вс соответственно в точках k и l, отличных от вершин треугольника. отрезокklкасается окружности,
вписанной в треугольникавс. найдите длину отрезка kl.
Так значит сначала обозначим О центр вписанной в треуг.окруж.Обозначим точки касания вписанной окружностью М - со стороной АВ,Р-со стороной ВС,и-точно так - же точку касания с KL обозначим N.Из-за того,что АСKL-вписанный четырехугольник,угол KLC + угол ВАС = 180 градусов, но угол BLK + угол KLC = 180 градусов, поэтому угол BLK = угол ВАС. Поэтому треугольник ВКL подобен АВС.
Обозначим BM = BP = x; АМ = АК = y; CK = CP = z - отрезки, на которые делят стороны точки касания вписанной окружности.
x + y = 7;
y + z = 8;
x + z = 10;
x - y = 2; 2*x = 9; нам понадобится именно эта величина, остальное считать не будем. Периметр треугольника BKL равен 2*x = 9; поскольку KM = KN и NL = LP, поэтому BK + KL + BL = BK + KN + NL + BL = MB + BP = 2*x
Из того, что BKL подобен АВС, следует, что BL = KL*7/8; BK = KL*10/8, периметр равен KL*25/8; Поэтому
KL*25/8 = 9; KL = 72/25;