Втреугольнике abc, угол c-тупой. высота aa1, bb1, cc1 продолжение высот пересекаются в точке o. доказать что угол abc= углу aoc, угол аос=углу obc ( если можете пришлите фото )

Catherina4002 Catherina4002    1   27.06.2019 08:50    4

Ответы
Lizkafrolova228 Lizkafrolova228  21.07.2020 20:23
1)
Рассмотрим 2 треугольника: АВВ1, АОС1:
- оба прямоугольные
- уголВАО общий
известно, что сумма острых углов прямоугольного треугольника величина постоянная (равна π/2), или:
уголАВВ1+уголВАВ1=уголАОС1+уголС1АО(=π/2),
              очевидно: уголВАВ1≡уголС1АО(≡ВАО),                                                           уголАВВ1≡уголАВС, уголАОС1≡уголАОС⇒получаем:
уголАВС+уголВАО=уголАОС+уголВАО,
уголАВС=уголАОС, ч.т.д

или вот так:
уголВСС1=уголОСВ1 (вертикальные при пересекающихся ОС1иВВ1))
Тогда π/2-уголВСС1=π/2-уголОСВ1,
а из треугольников(прямоугольных) ΔВСС1, ΔОСВ1 получим, что эти углы равны тем которые нам надо сравнить:
уголАВС=уголАОС, ч.т.д

2) это утверждение верно, только если АС=СВ, то есть нам дан равнобедренный тупоугольный треугольник.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика