Всоседнем графстве каждая из 15 усадеб соединена дорогой по крайней мере с 7 другими. докажите, что из любой усадьбы этого графства можно проехать в любую другую.

so9a so9a    3   26.09.2019 23:20    0

Ответы
Nastya28612 Nastya28612  08.10.2020 21:21

Рассмотрим дорожную сеть одной усадьбы, с семью другими усадьбами. Получается, 8 усадеб соединены дорогами. 15 – 8 = 7 усадеб не входят в эту сеть. Но они не смогут организовать отдельную сеть дорог, так как, по условию, каждая усадьба связана с 7 усадьбами, а каждая, из 7 усадеб, может быть соединена дорогами только с 6 другими усадьбами. Значит, минимум, одной дорогой они связаны с 8 -ю усадьбами. Следовательно, сеть дорог замыкается и, из любой усадьбы, можно проехать в любую другую, что и требовалось доказать.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика