Вправильной усеченной треугольной пирамиде сторона меньшего основания равна 3 см, а боковое ребро , равное 4 см, образует с высотой угол 60 градусов. найдите объем пирамиды. ( с полным решением и рисунком)
Чтобы найти объём, нужно знать высоту пирамиды и площади обоих оснований.
Рассмотрим прямоугольный тр. B1BH: угол B1 = 60, => угол B = 30 Катет, лежащий против угла в 30 гр., равен половине гипотенузы => B1H = 1/2 BB1 = 1/2 * 4 = 2 Значит, высота пирамиды h = 2.
Тр. A1B1C1 правильный, его площадь можно найти по формуле , получится см
Точка H является центром правильного тр. ABC, => HВ - радиус описанной окружности. HB можно найти по теореме Пифагора, HВ = 2√3 По этому радиусу можно сразу найти площадь треугольника по формуле
Рассмотрим прямоугольный тр. B1BH:
угол B1 = 60, => угол B = 30
Катет, лежащий против угла в 30 гр., равен половине гипотенузы => B1H = 1/2 BB1 = 1/2 * 4 = 2
Значит, высота пирамиды h = 2.
Тр. A1B1C1 правильный, его площадь можно найти по формуле , получится см
Точка H является центром правильного тр. ABC, => HВ - радиус описанной окружности. HB можно найти по теореме Пифагора, HВ = 2√3
По этому радиусу можно сразу найти площадь треугольника по формуле
Объём находится по формуле
см