Вправильной треугольной пирамиде со стороной основания 30 и боковым ребром 25 через точку, делящую боковое ребро в отношении 2: 3 ( считая от вершины пирамиды), проведена плоскость, параллельная противоположной боковой грани. найдите площадь полученного сечения.

alenakostenkova alenakostenkova    3   27.08.2019 16:00    1

Ответы
мам65 мам65  05.10.2020 23:03
Полученное сечение - равнобедренный треугольник, подобный треугольнику боковой грани с основанием 30 и боковыми сторонами по 25.
Площадь треугольника боковой грани Sб = (1/2)(√(25²-(30/2)²))*30 =
= (1/2)√(625-225)*30 = (1/2)*20*30 = 300 кв.ед.
Коэффициент подобия треугольника в сечении и боковой грани равен 2/5.
Площади подобных фигур относятся как квадрат коэффициента подобия.
Отсюда площадь сечения равна:
S = (2/5)²*Sб = (4/25)*300 = 48 кв.ед.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика