Впервенстве по хоккею участвуют 5 команд. каждые две из них должны сыграть между собой один матч. доказать, что в любой момент соревнований имеются две команды, сыгравшие одинаковое число матчей.
Докажем от противоречия. Пусть в в какой-то момент времени нет двух команд с одинаковым числом сыгранных матчей. Максимальное число сыгранных матчей одной командой - 4. Тогда команды сыграли соответственно 4, 3, 2, 1, 0 матчей. Отсюда видно, что одна команда, назовем ее А, не играла ни с кем, и еще одна, назовем е Б - со всеми. Получается, что А играла с Б, но не играла ни с кем - это противоречие, поэтому так быть не может. Следовательно, две команды с одинаковым числом сыгранных матчей есть всегда.
Пусть в в какой-то момент времени нет двух команд с одинаковым числом сыгранных матчей. Максимальное число сыгранных матчей одной командой - 4. Тогда команды сыграли соответственно 4, 3, 2, 1, 0 матчей. Отсюда видно, что одна команда, назовем ее А, не играла ни с кем, и еще одна, назовем е Б - со всеми. Получается, что А играла с Б, но не играла ни с кем - это противоречие, поэтому так быть не может.
Следовательно, две команды с одинаковым числом сыгранных матчей есть всегда.