Внаборе 2018 чисел: 2^1, 2^2, 2^3 . . 2^2018. сколькими из этого набора можно убрать одно число, чтобы произведение оставшихся чисел было квадратом некоторого натурального числа? а. 1007 б. 1008 в. 1009 г. 2017 д. 2018
Результат - двойка, возведенная в нечетную степень - не точный квадрат. Однако, если степень будет четной, то число окажется точным квадратом:
Для получения такого числа достаточной вычеркнуть из исходного набора любое число с нечетным показателем. Тогда по правилу деления степеней в показателе окажется разность нечетных чисел, то есть число четное. Выбрать же некоторое число с нечетной степенью можно так как в исходном наборе и чисел с нечетной степенью и чисел с четной степенью одинаковое количество. ответ: 1009
Результат - двойка, возведенная в нечетную степень - не точный квадрат. Однако, если степень будет четной, то число окажется точным квадратом:
Для получения такого числа достаточной вычеркнуть из исходного набора любое число с нечетным показателем. Тогда по правилу деления степеней в показателе окажется разность нечетных чисел, то есть число четное. Выбрать же некоторое число с нечетной степенью можно так как в исходном наборе и чисел с нечетной степенью и чисел с четной степенью одинаковое количество.
ответ: 1009