Вища математика до ть ''+10y' +24y=8xe^-6x

лінійні неоднорідні диференціальні рівняння другого порядку зі сталими

коефіцієнтами. ​

SashaNemur SashaNemur    3   16.05.2020 22:09    1

Ответы
фуад05 фуад05  16.05.2020 22:30

вот

Пошаговое объяснение:       y'' + 10y' + 24y = 6e^(-6x) + 168x + 118

Неоднородное уравнение 2 порядка.

y(x) = y0 + y* (решение однородного + частное решение неоднородного).

Решаем однородное уравнение

y'' + 10y' + 24y = 0

Характеристическое уравнение

k^2 + 10k + 24 = 0

(k + 4)(k + 6) = 0

y0 = C1*e^(-4x) + C2*e^(-6x)

Находим частное решение неоднородного уравнения

-6 - один из корней характеристического уравнения, поэтому

y* = A*x*e^(-6x) + B1*x + B2

y* ' = A*e^(-6x) - 6Ax*e^(-6x) + B1

y* '' = -6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x)

Подставляем в уравнение

-6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x) + 10A*e^(-6x) - 60Ax*e^(-6x) + 10B1 + 24A*x*e^(-6x) + 24B1*x + 24B2 = 6e^(-6x) + 168x + 118

(-6A - 6A + 36A*x + 10A - 60A*x + 24A*x)*e^(-6x) + 24B1*x + (10B1 + 24B2) =

= 6e^(-6x) + 168x + 118

Приводим подобные в скобке при e^(-6x)

-12A + 10A + 60A*x - 60A*x = -2A

Подставляем

-2A*e^(-6x) + 24B1*x + (10B1 + 24B2) = 6e^(-6x) + 168x + 118

Коэффициенты при одинаковых множителях должны быть равны

{ -2A = 6

{ 24B1 = 168

{ 10B1 + 24B2 = 118

Решаем

{ A = -3

{ B1 = 7

{ 70 + 24B2 = 118; B2 = (118 - 70)/24 = 48/24 = 2

y* = -3x*e^(-6x) + 7x + 2

ответ: y = y0 + y* = C1*e^(-4x) + C2*e^(-6x) - 3x*e^(-6x) + 7x + 2

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика