Утрапеції abcd (bc//ad) ab= 15 см, bc = 5 см, cd = 20 см. знайдіть радіус кола, вписаного в цю трапецію (у см).

Лерок228 Лерок228    3   10.08.2019 22:10    0

Ответы
hudognik78 hudognik78  04.10.2020 10:08
Радіус вписаного у трапецію кола дорівнює половині висоти трапеції r=h/2.
Щоб знайти висоту трапеції, знайдемо спочатку основу трапеції.
У трапецію можна вписати коло, якщо суми протилежних сторін трапеції рівні.
АВ+CD=BC+AD
AD=AB+CD-BC
AD=15+20-5=30(cм)
Проведемо висоти ВМ і СК
Δ АВМ і Δ КСD - прямокутні
ВМ=СК - катети
АВ і СD - гіпотенузи
Нехай КD - x cм  (катет)
            АМ - (30-5-х)=(25-х)см  (катет)
За теор. Піфагора:
ВМ²=АВ²-АМ²
СК²=СD²-KD²
АВ²-АМ²=СD²-KD²
15²-(25-х)²=20²-х²
225-(625-50х+х²)=400-х²
50х=800
х=16(см) - висота трапеції
r=1/2h
r=16:2=8(см) - радіус вписаного кола.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика