Угол между высотами параллелограмма проведенный из вершины тупого угла равен 60°. найти площадь если его стороны 8 см и 14 см.

weloyda weloyda    1   01.09.2019 20:00    1

Ответы
iluasdjoo iluasdjoo  16.08.2020 07:48
Допустим, у нас есть параллелограмм ABCD, где уголABC=уголBCD (тупые углы). BH перпендикулярна AD, ВК перпендикулярна СD. АВ = 8 см, ВС = 14 см. Получается, уголKBH=60 градусов (по условию)
1. Угол между высотами параллелограмма, проведенными из вершины тупого угла, равен острому углу параллелограмма.
Исходя из этого утверждения, можно считать, что уголKBH равен углу ABD (т. к. это острый угол параллелограмма, но еще и угол прямоугольного треугольника ABH). Из этого следует то, что уголABH=30 градусам, т. е. АН=половина АВ=4 см.
По т. Пифагора ВН=4√3.
По еще какой-то теореме квадрат высоты равен произведению отрезков, на которые она делит сторону, к которой она проведена (BH²=АН*НD, HD=BH²/AH=12 cм).
Значит, у нас есть АН и НD, а АD равна их сумме, т. е. 4+12=16 см
площадь параллелограмма: BH*AD= 4√3 см*16 см = 64√3 см
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика