Турист выехал на велосипеде с постоянной скоростью из города А в город В. На следующий день он отправился обратно в А, увеличив скорость на 2 км/ч. По пути он сделал остановку на 2 часа, в результате чего затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость туриста на пути из В в А, если расстояние между ними равно 224 км

Nastyarainb Nastyarainb    3   14.02.2022 12:13    2

Ответы
Bobskromnaysh12 Bobskromnaysh12  14.02.2022 12:20

Пошаговое объяснение:

Пусть скорость велосипедиста из А в В - х км /ч,  тогда скорость из В в А  x + 2 км/ч , а  время, за которое велосипедист проехал путь из В в А 224 х ч, соответственно  время, за которое велосипедист путь из А в В 224/x+2 +2 ч

Составим уравнение:

224/x + 2 + 2 = 224/x

224x + 2x² + 4x = 224x +448

2x² + 4x - 448 =0 | :2

x² + 2x - 224=0

D= 2²- 4* ( -224)= 4 + 896 = 900

√900 = 30

x1 =  (-2 - 30)/2 = - 16 (не подходит по условию задачи, т.к скорость не может быть отрицательной

x2 =  (-2 + 30)/2 = 14 км/ч скорость с А в В

14 + 2 = 16 км/ч скорость туриста на пути из В в А

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика