Требуется с неравенством 0,6^2x-3/5x-1≥06^2x-1/5x+4. хочется понять, как решать подобные неравенства. я понимаю, что основание 0,6 < 1, поэтому знак меняем в другую сторону, а дальше, при решении неравенства уже путаюсь и ничего не выходит. надеюсь, что кто-то сможет подробно объяснить. необходимо найти количество интервалов, наименьшее целое положительное решение неравенства и сумму всех чисел, которые не вошли в ответ. заранее огромное за ответ : )

revunova revunova    1   05.07.2019 19:44    0

Ответы
Аurikа Аurikа  02.10.2020 20:50

0,6^{\frac{2x-3}{5x-1} }\geq 0,6^{\frac{2x-1}{5x+4} }

Показательная функция с основанием (0 <0,6 <1)  убывающая, значит большему значению функции соответствует меньшее значение аргумента

Это означает, что в неравенстве между показателями степеней знак меньше:

\frac{2x-3}{5x-1}\leq\frac{2x-1}{5x+4}

Получили дробно- рациональное неравенство.

Переносим выражение справа в левую часть

\frac{2x-3}{5x-1}-\frac{2x-1}{5x+4}\leq 0

Приводим к общему знаменателю  и получаем неравенство

\frac{(2x-3)(5x+4)-(2x-1)(5x-1)}{(5x-1)(5x+4)}\leq 0

\frac{10x^2-15x+8x-12-(10x^2-5x-2x+1)}{(5x-1)(5x+4)}\leq 0\\ \\ \frac{10x^2-7x-12-10x^2+7x-1}{(5x-1)(5x+4)}\leq 0\\ \\ \frac{-13}{(5x-1)(5x+4)}\leq 0\\ \\-13 0

Знаменатель дроби не должен равняться 0, поэтому неравенство строгое.

Решение  неравенства x < -4/5  или  x>1/5

Интервалов два:

(-∞;-4/5)  U (1/5;+∞)

Наименьшее целое положительное х=1

В ответ не вошли числа принадлежащие

[-4/5;1/5]

Далее непонятен вопрос, сумму каких чисел надо найти:

целых положительных?

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика