ну тут одни прогрессии ,я конечно могу ошибиться, но СУММА(1,k;2/2^n) = (1 - (1/2)^k)/(1/2) = 2*(1 - (1/2)^k); это просто сумма степеней 1/2 от 1 до (1/2)^(k-1); СУММА(1; (1/4)^(k+1)*2*(1 - (1/2)^k)) = 2*СУММА(1; (1/4)^(k+1)) - 2*(1/2)^2*СУММА(1;(1/8)^k) = 2*(1/16)*(1/(1 - 1/4)) - (1/2)*(1/8)*(1/(1 -1/8)) = 2/21; вы только арифметику проверьте, а то у меня дурацкая привычка считать ряды в уме :)) принцип для бесконечной геометрической прогрессии всегда прост - надо взять первый член и разделить на (1 - q)... для конечной еще надо умножить на (1 - q^k) где k на 1 больше степени последнего члена...
СУММА(1,k;2/2^n) = (1 - (1/2)^k)/(1/2) = 2*(1 - (1/2)^k); это просто сумма степеней 1/2 от 1 до (1/2)^(k-1);
СУММА(1; (1/4)^(k+1)*2*(1 - (1/2)^k)) = 2*СУММА(1; (1/4)^(k+1)) - 2*(1/2)^2*СУММА(1;(1/8)^k) = 2*(1/16)*(1/(1 - 1/4)) - (1/2)*(1/8)*(1/(1 -1/8)) = 2/21;
вы только арифметику проверьте, а то у меня дурацкая привычка считать ряды в уме :)) принцип для бесконечной геометрической прогрессии всегда прост - надо взять первый член и разделить на (1 - q)... для конечной еще надо умножить на (1 - q^k) где k на 1 больше степени последнего члена...