Сумма десятичных логаритмов девяти последовательно членов геометрической прогрессии составляет 9. Чему равно произведение крайних из рассматриваемых членов?
Поскольку сумма десятичных логарифмов равна десятичному логарифму произведения, то произведение всех девяти членов геометрической прогрессии равно: 10^9 . По свойству геометрической прогрессии: произведение любых двух членов симметричных относительно центра равны. В данной прогрессии 9 членов, в значит 8 членов имеют симметричную пару (4 пары), а центральный член такой пары не имеет. Пусть центральный член равен x , тогда произведение членов симметричных центру равно x^2 . Таким образом:
ответ:100
Пошаговое объяснение:
Поскольку сумма десятичных логарифмов равна десятичному логарифму произведения, то произведение всех девяти членов геометрической прогрессии равно: 10^9 . По свойству геометрической прогрессии: произведение любых двух членов симметричных относительно центра равны. В данной прогрессии 9 членов, в значит 8 членов имеют симметричную пару (4 пары), а центральный член такой пары не имеет. Пусть центральный член равен x , тогда произведение членов симметричных центру равно x^2 . Таким образом:
x*(x^2)^4=10^9
x^9=10^9
x=10
Произведение крайних из рассматриваемых членов:
x^2=100