Строится числовая последовательность: первый ее член равен 3 в степени 1986, а каждый следующий член, начиная со второго, равен сумме цифр предыдущего. найдите десятый член этой последовательности.
Воспользуемся тем что число делится на 9 , тогда и только тогда когда сумма его цифр делится на 9 . Из первого члена очевидно что оно делится на 9 , так как степень 3 запишем ее в виде
то есть второй член тогда будет равен заметим то что каждый член будет делится на 9 , потому сумма каждого числа делится на 9. То есть кратно Возьмем для начало такое число то есть пусть она по количеству цифр будет равна количеству цифр числа , очевидно что это число будет иметь по крайней мере цифр то есть мы предположим что самое максимальное число заданными только 9 и их сумма уже будет равна 9*1000=9000, но возьмем еще 8 , для того что бы посмотреть максимальную сумму , 9*1008=9072 то есть видно что второе число уже будет грубо
запишем ее в виде
то есть второй член тогда будет равен
заметим то что каждый член будет делится на 9 , потому сумма каждого числа делится на 9. То есть кратно
Возьмем для начало такое число то есть пусть она по количеству цифр будет равна количеству цифр числа , очевидно что это число будет иметь по крайней мере цифр
то есть мы предположим что самое максимальное число заданными только 9
и их сумма уже будет равна 9*1000=9000, но возьмем еще 8 , для того что бы посмотреть максимальную сумму , 9*1008=9072
то есть видно что второе число уже будет грубо
, и , , , и.т.д и очевидно
ответ 9