Среднее значение длины детали 50 см, а дисперсия – 0,1. Используя неравенство Чебышева, оценить вероятность того, что случайно взятая деталь окажется по длине не менее 49,5 и не более 50,5 см. Уточнить вероятность того же события, если известно, что длина случайно взятой детали имеет нормальный закон распределения.
Шаг 1: Расчет стандартного отклонения.
Для начала, нам нужно вычислить стандартное отклонение (σ) по формуле: σ = √дисперсия.
В нашем случае, дисперсия равна 0,1, поэтому σ = √0,1 = 0,3162.
Шаг 2: Применение неравенства Чебышева.
Неравенство Чебышева гласит: P(|X - μ| ≥ kσ) ≤ 1/k², где P - вероятность, Х - случайная величина, μ - среднее значение случайной величины, σ - стандартное отклонение, k - положительное число.
Мы знаем, что μ (среднее значение) = 50 см.
По условию, нам нужно оценить вероятность P(|X - 50| ≤ 0,5), то есть вероятность того, что случайно взятая деталь окажется по длине не менее 49,5 и не более 50,5 см.
Перепишем это событие в виде P(|X - 50| ≥ 0,5), так как нам будет удобнее использовать неравенство Чебышева в этой форме.
Теперь мы можем применить неравенство Чебышева:
P(|X - 50| ≥ 0,5) ≤ 1/((0,5/0,3162)²)
Шаг 3: Вычисление вероятности.
Давайте теперь вычислим правую часть неравенства:
1/((0,5/0,3162)²) = 1/((0,5/0,3162) * (0,5/0,3162)) = 1/(0,7914 * 0,7914) = 1/0,625 = 1,6.
Итак, P(|X - 50| ≥ 0,5) ≤ 1,6.
Шаг 4: Ответ на вопрос.
Мы оценили вероятность P(|X - 50| ≥ 0,5) с помощью неравенства Чебышева и получили, что она не превосходит 1,6. Отметим, что это верхняя граница вероятности, поэтому точная вероятность может быть меньше. Однако мы не можем точно сказать, насколько меньше, используя только неравенство Чебышева.
Теперь перейдем ко второй части вопроса: уточнение вероятности, если длина случайно взятой детали имеет нормальный закон распределения.
Если длина случайно взятой детали имеет нормальное распределение, мы можем использовать таблицы стандартного нормального распределения (Z-таблицы) для точного расчета вероятности.
Шаг 5: Перевод длин в стандартные отклонения.
Для начала нам нужно перевести значения длин (49,5 и 50,5 см) в стандартные отклонения, используя формулу Z = (X - μ) / σ, где Z - стандартная оценка.
Z1 = (49,5 - 50) / 0,3162 = -0,1581
Z2 = (50,5 - 50) / 0,3162 = 0,1581
Шаг 6: Определение площади под кривой.
Теперь мы можем использовать значения Z1 и Z2, чтобы определить площадь под кривой нормального распределения между этими Z-значениями. Это даст нам точную вероятность того, что случайно взятая деталь окажется в указанном диапазоне.
Используя Z-таблицы, мы находим два значения: Z1 = -0,1581 соответствует площади A1 = 0,4371, и Z2 = 0,1581 соответствует площади A2 = 0,5628.
Шаг 7: Расчет вероятности.
Чтобы получить искомую вероятность, нам нужно вычислить разницу между этими двумя площадями: P(|X - 50| ≤ 0,5) = A2 - A1 = 0,5628 - 0,4371 = 0,1257.
Итак, при условии, что длина случайно взятой детали имеет нормальный закон распределения, вероятность того, что деталь окажется по длине не менее 49,5 и не более 50,5 см, составляет примерно 0,1257.