X – множество треугольников, А, В и С – его подмножества. Можно
ли говорить о разбиении множества X на классы А, В и С, если:
а) А – множество остроугольных треугольников, В – множество
тупоугольных треугольников, С – множество прямоугольных треугольников;
б) А – множество равнобедренных треугольников, В – множество
равносторонних треугольников, С – множество разносторонних
треугольников? - 1 задача
В классе 18 учащихся увлекаются химией, а 13 – географией. Каким
может быть число учащихся, увлекающихся: а) обоими предметами; б) хотя бы
одним предметом; в) только одним предметом? - 2 задача
Сколько различных множеств можно составить из 5 различных
цифр? - 3 задача
Пошаговое объяснение:
X – множество треугольников, А, В и С – его подмножества. Можно
ли говорить о разбиении множества X на классы А, В и С, если:
а) А – множество остроугольных треугольников, В – множество
тупоугольных треугольников, С – множество прямоугольных треугольников;
б) А – множество равнобедренных треугольников, В – множество
равносторонних треугольников, С – множество разносторонних
треугольников? - 1 задача
В классе 18 учащихся увлекаются химией, а 13 – географией. Каким
может быть число учащихся, увлекающихся: а) обоими предметами; б) хотя бы
одним предметом; в) только одним предметом? - 2 задача
Сколько различных множеств можно составить из 5 различных
цифр? - 3 задача
Пошаговое объяснение: