Случайное отклонение размера детали от номинала при изготовлении ее на данном станке имеет нулевое ожидание и среднее квадратическое отклонение, равное 5мк. сколько необходимо изготовить деталей, чтобы с вероятностью не менее 0,9 среди них была хотя бы одна годная, если для годной детали допустимо отклонение размера от номинала не более, чем на 2мк?

aldeerGroMo aldeerGroMo    3   31.07.2019 05:30    8

Ответы
яся72 яся72  28.09.2020 12:28
Лучше сформулировать не "с вероятностью 0,99", а "с вероятностью не менее 0,99".

Все-таки считается, что случайная величина Х - отклонение размера детали от номинала - распределена нормально с указанными параметрами. 
Тогда можно найти вероятность того, что наугад взятая деталь окажется стандартной:
P(|X-0|<4)=2Ф(4/8)=2Ф(1/2)=0.383 (из таблицы функции Лапласа).

Пришли к такой стандартной задаче: Событие А (деталь стандартна) имеет вероятность 0.383. Сколько необходимо провести испытаний, чтобы с вероятностью не менее 0.99 это событие появилось хотя бы один раз. Это можно вычислить либо по формуле Бернулли, либо по формуле вероятности появления хотя бы одного из независимых событий. Если это число раз обозначить n, то для этого n получим неравенство:
1-(1-0.383)^n > 0.99 или 0.617^n < 0.01
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика