Отвечал уже Если мы берем k последовательных слагаемых, то получаем сумму k*n + k(k-1)/2 = 2015 Умножаем все на 2 2k*n + k(k-1) = 4030 k*(2n + k - 1) = 4030 = 2*5*13*31 Варианты: k = 2; 2n + k - 1 = 2n + 1 = 5*13*31 = 2015; n = 1007 k = 5; 2n + k - 1 = 2n + 4 = 2*13*31 = 806; n = 401 k = 2*5 = 10; 2n + k - 1 = 2n + 9 = 13*31 = 403; n = 197 k = 13; 2n + k - 1 = 2n + 12 = 2*5*31 = 310; n = 149 k = 2*13 = 26; 2n + k - 1 = 2n + 25 = 5*31 = 155; n = 65 k = 31; 2n + k - 1 = 2n + 30 = 2*5*13 = 130; n = 50 k = 2*31 = 62; 2n + k - 1 = 2n + 61 = 5*13 = 65; n = 2 Больше нет, потому что дальше n будут отрицательные. Всего 7 вариантов.
Если мы берем k последовательных слагаемых, то получаем сумму
k*n + k(k-1)/2 = 2015
Умножаем все на 2
2k*n + k(k-1) = 4030
k*(2n + k - 1) = 4030 = 2*5*13*31
Варианты:
k = 2; 2n + k - 1 = 2n + 1 = 5*13*31 = 2015; n = 1007
k = 5; 2n + k - 1 = 2n + 4 = 2*13*31 = 806; n = 401
k = 2*5 = 10; 2n + k - 1 = 2n + 9 = 13*31 = 403; n = 197
k = 13; 2n + k - 1 = 2n + 12 = 2*5*31 = 310; n = 149
k = 2*13 = 26; 2n + k - 1 = 2n + 25 = 5*31 = 155; n = 65
k = 31; 2n + k - 1 = 2n + 30 = 2*5*13 = 130; n = 50
k = 2*31 = 62; 2n + k - 1 = 2n + 61 = 5*13 = 65; n = 2
Больше нет, потому что дальше n будут отрицательные.
Всего 7 вариантов.