Синус двугранного угла при боковом ребре правильной четырёхугольной пирамиды равен 4√2/9. найдите площадь боковой поверхности пирамиды, если площадь её диагонального сечения равна 8.

айрат36 айрат36    3   12.09.2019 12:10    1

Ответы
анастасия1548 анастасия1548  07.10.2020 09:44
Если фразу из задания: "Синус двугранного угла при боковом ребре правильной четырёхугольной пирамиды равен 4√2/9" понимать так:
"Синус угла между боковым ребром правильной четырёхугольной пирамиды  и её основанием равен 4√2/9", то решение задания следующее. Пусть это будет угол С. Сторону основания примем а.

Находим косинус угла С:
cos С = √(1 - sin²С) = √(1 - (32/81) = √(49/81) = 7/9.
Тангенс А равен: tg С = sin С / cos С = (4√2/9) / (7/9) = 4√2/7.
Высота Н пирамиды равна высоте равнобедренного треугольника, полученного в диагональном сечении пирамиды.
Площадь сечения равна: S = (1/2)dH . где d = a√2. H = (a√2/2)*tg С =
= (a√2/2)*(4√2/7) = 4a/7.
Подставим значения в формулу площади:
8 = (1/2)*а√2*(4а/7) = 4√2*а²/14.
Сократим на 4 и получаем а = √(28/√2) ≈  4,449606.
Высота Н = (4/7)а = (4/7)*√(28/√2) ≈  2,542632.
Находим апофему А боковой грани:
А = √(Н² + (а/2)²) = √((64/7√2) + (7/√2)) ≈ √(113/7√2) ≈ 3,378568.
Периметр Р основания равен: Р = 4а = 4√(28/√2) ≈  17,79842.
Отсюда находим искомую площадь боковой поверхности пирамиды.
Sбок = (1/2)РА = (1/2)*4√(28/√2)*√(113/7√2) ≈  30,06659 кв.ед.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика