Пошаговое объяснение:
1) sinx/3cosπ/5 - cosx/3sinπ/5 = √2/2; sin(x/3 - π/5) = √2/2; a) x/3 - π/5 = π/4 + 2πk, k ∈ Z; x/3 = π/5 + π/4 + 2πk, k ∈ Z; x/3 = 9π/20 + 2πk, k ∈ Z, x = 27π/20 + 6πk, k ∈ Z; b) x/3 - π/5 = (π - π/4) + 2πn, n ∈ Z; x/3 = π/5 + 3π/4 + 2πn , n ∈ Z; x/3 = 19π/20 + 2πn, n ∈ Z; x = 57π/20 + 6πn, n ∈ Z; ответ: x = 27π/20 + 6πk, k ∈ Z; x = 57π/20 + 6πn, n ∈ Z;
Пошаговое объяснение:
1) sinx/3cosπ/5 - cosx/3sinπ/5 = √2/2; sin(x/3 - π/5) = √2/2; a) x/3 - π/5 = π/4 + 2πk, k ∈ Z; x/3 = π/5 + π/4 + 2πk, k ∈ Z; x/3 = 9π/20 + 2πk, k ∈ Z, x = 27π/20 + 6πk, k ∈ Z; b) x/3 - π/5 = (π - π/4) + 2πn, n ∈ Z; x/3 = π/5 + 3π/4 + 2πn , n ∈ Z; x/3 = 19π/20 + 2πn, n ∈ Z; x = 57π/20 + 6πn, n ∈ Z; ответ: x = 27π/20 + 6πk, k ∈ Z; x = 57π/20 + 6πn, n ∈ Z;