Каждая сторона треугольника меньше суммы двух других сторон.
Доказательство: Проведём CD=CB, AC+CD=AD. ∠1=∠2. В треугольнике АВD требуется доказать, что АВ<AD. ∠2=∠1<∠ABD. Пользуясь теоремой о соотношении углов и сторон, АВ <AD=AC+CB, что и требовалось доказать.
Пошаговое объяснение:
Каждая сторона треугольника меньше суммы двух других сторон.
Доказательство: Проведём CD=CB, AC+CD=AD. ∠1=∠2. В треугольнике АВD требуется доказать, что АВ<AD. ∠2=∠1<∠ABD. Пользуясь теоремой о соотношении углов и сторон, АВ <AD=AC+CB, что и требовалось доказать.
Каждая сторона треугольника меньше суммы двух других сторон.
Доказательство: Проведём CD=CB, AC+CD=AD. ∠1=∠2. В треугольнике АВD требуется доказать, что АВ<AD. ∠2=∠1<∠ABD. Пользуясь теоремой о соотношении углов и сторон, АВ <AD=AC+CB, что и требовалось доказать.
Пошаговое объяснение:
Каждая сторона треугольника меньше суммы двух других сторон.
Доказательство: Проведём CD=CB, AC+CD=AD. ∠1=∠2. В треугольнике АВD требуется доказать, что АВ<AD. ∠2=∠1<∠ABD. Пользуясь теоремой о соотношении углов и сторон, АВ <AD=AC+CB, что и требовалось доказать.