С! определить траекторию точки м, которая движется так, что ее расстояние от точки f(-8,0) вдвое больше, чем от прямой x=-2

orxan9889 orxan9889    1   09.09.2019 19:00    4

Ответы
maksdodaruk1 maksdodaruk1  07.10.2020 03:49
MF - расстояние от точки M до F.
MK - расстояние от точки M до K. K∈ x=-2.
Исходя из условия: |MF| = 2 |MK|
Пусть точка M имеет координаты (x;y).
1. Вычислим координаты векторов MF и MK.
 FM = {x-(-8), y-0} = {x+8,y}
 KM = {x-(-2), y-0} = {x+2,y}
2. Найдем длины этих векторов.
|FM| = √((x+8)²+y²)
|KM| = √((x+2)²+y²)
|MF| = 2 |MK| 
√((x+8)²+y²) = 2 ((x+2)²+y²)  - возведем обе части в квадрат.
(x+8)²+y² = 4 ((x+2)²+y²)
x²+16x+64+y² = 4((x²+2x+4)+y²)
x²+16x+64+y² = 4x²+8x+16+4y²
3x²+3y²=48 | :3
x²+y²=16 - уравнение окружности ⇒ траекторией точки M является окружность.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика