x=/4+*n/2
Пошаговое объяснение:
sin^2(x)*cos^2(x)*(sin^2(x) - cos^2(x)) = cos2x
- sin^2(x)*cos^2(x)*cos2x = cos2x
cos2x + sin^2(x)*cos^2(x)*cos2x = 0
cos2x(1 + sin^2(x)*cos^2(x)) = 0
cos2x = 0 або 1 + sin^2(x)*cos^2(x) = 0
2x = /2+*n або sin^2(x)*cos^2(x) = -1 це неможливо, бо x = /4+*n/2 квадрати >= 0
x=/4+*n/2
Пошаговое объяснение:
sin^2(x)*cos^2(x)*(sin^2(x) - cos^2(x)) = cos2x
- sin^2(x)*cos^2(x)*cos2x = cos2x
cos2x + sin^2(x)*cos^2(x)*cos2x = 0
cos2x(1 + sin^2(x)*cos^2(x)) = 0
cos2x = 0 або 1 + sin^2(x)*cos^2(x) = 0
2x = /2+*n або sin^2(x)*cos^2(x) = -1 це неможливо, бо x = /4+*n/2 квадрати >= 0