D(y)=(1/4; +∞) и D(y)=(-∞; 3.5)
Пошаговое объяснение:
1)
y=log_{6}(4x-1) \\ 4x-1\ \textgreater \ 0 \\ 4x\ \textgreater \ 1 \\ x\ \textgreater \ \frac{1}{4}
D(y)=(1/4; +∞)
2)
y=log_{ \frac{1}{9} }(7-2x) \\ 7-2x\ \textgreater \ 0 \\ -2x\ \textgreater \ -7 \\ x\ \textless \ -7:(-2) \\ x\ \textless \ 3.5
D(y)=(-∞; 3.5)
D(y)=(1/4; +∞) и D(y)=(-∞; 3.5)
Пошаговое объяснение:
1)
y=log_{6}(4x-1) \\ 4x-1\ \textgreater \ 0 \\ 4x\ \textgreater \ 1 \\ x\ \textgreater \ \frac{1}{4}
D(y)=(1/4; +∞)
2)
y=log_{ \frac{1}{9} }(7-2x) \\ 7-2x\ \textgreater \ 0 \\ -2x\ \textgreater \ -7 \\ x\ \textless \ -7:(-2) \\ x\ \textless \ 3.5
D(y)=(-∞; 3.5)