Решить уравнение: sin в квадрате (8п-х)-5cos(п/2+х)+4=8+4

az12345687 az12345687    2   06.10.2019 09:40    0

Ответы
amid69 amid69  09.10.2020 23:21

Пошаговое объяснение:

sin^2(8pi - x) - 5cos(pi/2 + x) + 4 = 8 + 4;

sin^2(8pi - x) - 5cos(pi/2 + x) = 8;

Используя свойство периодничности синуса sin(8pi - x) = sin(-x) = -sinx; получаем sin^2(8pi - x) = (-sinx) ^ 2 = [т.к. возводим в квадрат] = sin^2(x);

Далее используем формулу приведения для косинуса: cos(pi/2 + x) = sinx; Получаем:

sin^2(x) - 5sinx = 8;

Используем замену sinx = t; t принадлежит [-1; 1];

t^2 - 5t - 8 = 0;

t1 = (5 + sqrt(57)) / 2   не подходит

t2 = (5 - sqrt(57)) / 2 не подходит

Отсюда корней нет.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика