1)log1/2(2x-1)-log1/2(16)=5 ОДЗ:2x-1> 0
log1/2 (2x-1)/16 =5 2x > 1(2x-1)/16 = (1/2)^5 x > 0,5(2x-1)/16 =1/322x-1=0,52x=1,5 x=7,5 2)lg(5x+2)=1/2lg36+lg2Одз 5x+2>0lg(5x+2)=lg6+lg2lg(5x+2)=lg125x+2=`125x=10x=2
1)log1/2(2x-1)-log1/2(16)=5 ОДЗ:2x-1> 0
log1/2 (2x-1)/16 =5 2x > 1
3)log₃(4-2x)-log₃2=2 ODZ 4-2x>0log₃((4-2x)/2)=log₃3² -2x>-4(2x-1)/16 = (1/2)^5 x > 0,5
(2x-1)/16 =1/32
2x-1=0,5
2x=1,5
x=7,5
2)lg(5x+2)=1/2lg36+lg2
Одз 5x+2>0
lg(5x+2)=lg6+lg2
lg(5x+2)=lg12
5x+2=`12
5x=10
x=2
(4-2x)/2=9 x<2
4-2x=9*2
4-2x=18
2x=4-18
2x=-14
x=-14/2
x=-7
4)log3(12-5x)=2ОДЗ: 12-5x>0; -5x>-12;5x<12; x<2,4
12-5x=3^2
12-5x=9
-5x=9-12
-5x=-3
x=3/5
5)log2 (7x - 4) = log2 4 + log2 13 log2 (7x-4)/4 = log2 13
(7x - 4)/4 = 13
7x - 4 =52
x = 8