Решить графически уравнение
(1/2)^x=2x+3​

никусь2222 никусь2222    1   27.09.2019 08:18    206

Ответы
Илья11345 Илья11345  16.01.2024 08:06
Хорошо! Давайте решим данное уравнение графически.

Первым шагом нам нужно построить график двух функций: y=(1/2)^x и y=2x+3.

Функция y=(1/2)^x является экспоненциальной функцией. Изначально построим таблицу значений для этой функции, чтобы знать координаты нескольких точек:

x | y=(1/2)^x
--------------
-2 | 4
-1 | 2
0 | 1
1 | 1/2
2 | 1/4

Теперь на основе этих значений построим график функции на координатной плоскости. Заметим, что функция убывает с ростом x.

Далее построим график второй функции y=2x+3. Это линейная функция, которая повышается с ростом x.

Теперь нарисуем оба графика на одной координатной плоскости:

|
| * (0, 1)
|
|
--------------
| /|
| / |
| / |
| / |
|/ | (2, 1/4)
--------------
| * (1, 1/2)
|
|
|
|
--------------
| * (-2, 4)
|
|
|
|

Теперь мы видим, что график функции y=(1/2)^x пересекает график функции y=2x+3 в трех точках: (-2, 4), (0, 1) и (2, 1/4).

Далее, чтобы решить уравнение (1/2)^x=2x+3 графически, мы должны найти точки пересечения этих графиков.

Замечаем, что у нас есть две точки пересечения на графике функции y=2x+3, но только одна точка пересечения на графике функции y=(1/2)^x.

Таким образом, решение уравнения (1/2)^x=2x+3 - точка пересечения этих функций на графике, и она равна примерно (0, 1).

Ответ: x≈0.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика