Пошаговое объяснение:
Sin(π/4-a) -√2/2sina, cos a=0, 5;
Sin(π/4-a) -√2/2sina=sin(π/4)cosa-cos(π/4)sina-√2/2sina=
=√2/2cosa-√2/2sina-√2/2sina=√2/2cosa-√2sina=√2/2*(1/2)-√2sina=√2/2*(1/2)-√2(√3/2)=√2/4-√(3/2)
cos a=0, 5 to sina=√3/2 0<a<π/2
ответ: √2/2 ( 0,5 - √3 ) .
cosα = 0,5 ; sinα = √ ( 1 - cos²α ) = √ ( 1 - 0,5²) = √0,75 = 0,5√3 ;
sin(π/4 - α) - √2/2sinα = sinπ/4cosα - sinαcosπ/4 - √2/2sinα = √2/2 cosα -
- √2/2 sinα - √2/2sinα = √2/2 cosα - √2sinα = √2/2 ( cosα - 2sinα );
якщо cosα = 0,5 , то √2/2 ( cosα - 2sinα ) = √2/2 ( 0,5 - 2 *0,5√3 ) =
= √2/2 ( 0,5 - √3 ) .
Пошаговое объяснение:
Sin(π/4-a) -√2/2sina, cos a=0, 5;
Sin(π/4-a) -√2/2sina=sin(π/4)cosa-cos(π/4)sina-√2/2sina=
=√2/2cosa-√2/2sina-√2/2sina=√2/2cosa-√2sina=√2/2*(1/2)-√2sina=√2/2*(1/2)-√2(√3/2)=√2/4-√(3/2)
cos a=0, 5 to sina=√3/2 0<a<π/2
ответ: √2/2 ( 0,5 - √3 ) .
Пошаговое объяснение:
cosα = 0,5 ; sinα = √ ( 1 - cos²α ) = √ ( 1 - 0,5²) = √0,75 = 0,5√3 ;
sin(π/4 - α) - √2/2sinα = sinπ/4cosα - sinαcosπ/4 - √2/2sinα = √2/2 cosα -
- √2/2 sinα - √2/2sinα = √2/2 cosα - √2sinα = √2/2 ( cosα - 2sinα );
якщо cosα = 0,5 , то √2/2 ( cosα - 2sinα ) = √2/2 ( 0,5 - 2 *0,5√3 ) =
= √2/2 ( 0,5 - √3 ) .