Числа 1, 2, 3... - это члены арифметической прогрессии, так как каждое последующее число , начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):
a_n=a_{n-1} + d.
Сумма всех членов арифметической прогрессии равна половине произведения суммы её крайних членов на количество всех её членов.
S =((a1 + an)/2)*n.
Поэтому сума чисел 1+2+3+…+98+99+100 равна: (d = 1)
Числа 1, 2, 3... - это члены арифметической прогрессии, так как каждое последующее число , начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):
a_n=a_{n-1} + d.
Сумма всех членов арифметической прогрессии равна половине произведения суммы её крайних членов на количество всех её членов.
S =((a1 + an)/2)*n.
Поэтому сума чисел 1+2+3+…+98+99+100 равна: (d = 1)
S = ((1 + 100)/2)*100 = 50.5*100 = 5050.
ответ: S = 5050.