Задача нахождения неопределенного интеграла дробно рациональной функции сводится к интегрированию простейших дробей. Поэтому рекомендуем для начала ознакомиться с разделом теории разложение дроби на простейшие.
Пример.
Найти неопределенный интеграл.
Решение.
Так как степень числителя подынтегральной функции равна степени знаменателя, то для начала выделяем целую часть, проводя деление столбиком многочлена на многочлен:
Поэтому,
азложение полученной правильной рациональной дроби на простейшие дроби имеет вид. Следовательно,
Полученный интеграл представляет собой интеграл простейшей дроби третьего типа. Забегая немного вперед, отметим, что взять его можно методом подведения под знак дифференциала.
Так как, то Поэтому
Следовательно,
теперь перейдем к описанию методов интегрирования простейших дробей каждого из четырех типов.
Интегрирование простейших дробей.
Задача нахождения неопределенного интеграла дробно рациональной функции сводится к интегрированию простейших дробей. Поэтому рекомендуем для начала ознакомиться с разделом теории разложение дроби на простейшие.
Пример.
Найти неопределенный интеграл.
Решение.
Так как степень числителя подынтегральной функции равна степени знаменателя, то для начала выделяем целую часть, проводя деление столбиком многочлена на многочлен:
Поэтому,
азложение полученной правильной рациональной дроби на простейшие дроби имеет вид. Следовательно,
Полученный интеграл представляет собой интеграл простейшей дроби третьего типа. Забегая немного вперед, отметим, что взять его можно методом подведения под знак дифференциала.
Так как, то Поэтому
Следовательно,
теперь перейдем к описанию методов интегрирования простейших дробей каждого из четырех типов.