1) функция F(x) = x^3-2x+1 является первообразной для F(x) = (3x^2-2)', т.к. (x^3-2x+1)=(3x^2 - 2 + 0)
2)функция F(x) = x^4 - 7 является первообразной для F(x)= 4x^3 т.к. (x^4 - 7)' = (4x^3 - 0
3)функция F(x) = 10 является первообразной для F(x)= 0 т.к. (10)'=(0)
4)функция F(x) = корень из x является первообразной для F(x)=1/2 корень из x при x(0;положительной бесконечности) т.к. F(x) (корень из x)' = (1/2 корень из x, при x(0;положительной бесконечности) так как число под корнем не может быть отрицательным
5)функция F(x) = 10x^10 является первообразной для F(x)= (100x^9) т.к. (10x^10)'=(100x^9)
Пошаговое объяснение:
1) функция F(x) = x³-2x+C является первообразной для
f(x) = 3x²-2, т.к. (x^3-2x+C)'=3x²-2.
2)функция F(x) = x⁴+C является первообразной для
f(x) = 3x³, т.к. (x⁴+C)'=4x³.
3) функция F(x) = C является первообразной для
f(x) = 0, т.к. (C)'=0
4) функция F(x) = √x+C является первообразной для
f(x) = 1/(2√x), т.к. (√x+C)'=1/(2√x) x∈(0,+∞)
5) функция F(x) = 10x¹⁰+C является первообразной для
f(x) =100x⁹, т.к. (10x¹⁰+C)'=100x⁹.
1) функция F(x) = x^3-2x+1 является первообразной для F(x) = (3x^2-2)', т.к. (x^3-2x+1)=(3x^2 - 2 + 0)
2)функция F(x) = x^4 - 7 является первообразной для F(x)= 4x^3 т.к. (x^4 - 7)' = (4x^3 - 0
3)функция F(x) = 10 является первообразной для F(x)= 0 т.к. (10)'=(0)
4)функция F(x) = корень из x является первообразной для F(x)=1/2 корень из x при x(0;положительной бесконечности) т.к. F(x) (корень из x)' = (1/2 корень из x, при x(0;положительной бесконечности) так как число под корнем не может быть отрицательным
5)функция F(x) = 10x^10 является первообразной для F(x)= (100x^9) т.к. (10x^10)'=(100x^9)
Пошаговое объяснение: