Признаки делимости - важная вещь в математике, ведь они позволяют с лёгкостью определить делители какого-либо числа! Вот только несколько примеров: Число делится на 2ⁿ, если последние n цифр числа делятся на 2ⁿ. Число делится на 3, если сумма цифр данного числа делится на 3. Число делится на 9, если сумма цифр данного числа делится на 9. Число делится на 5ⁿ, если последние n цифр числа делятся на 5ⁿ. Число делится на 10ⁿ, если последние n цифр числа - нули. Число делится на 11, если разность суммы цифр, стоящих на чётных и нечётных местах равна 11k. И это только некоторые из них! К тому же можно комбинировать признаки делимости: Например, число делится на 6, когда оно чётное и сумма его цифр делится на 3
Число делится на 2ⁿ, если последние n цифр числа делятся на 2ⁿ.
Число делится на 3, если сумма цифр данного числа делится на 3.
Число делится на 9, если сумма цифр данного числа делится на 9.
Число делится на 5ⁿ, если последние n цифр числа делятся на 5ⁿ.
Число делится на 10ⁿ, если последние n цифр числа - нули.
Число делится на 11, если разность суммы цифр, стоящих на чётных и нечётных местах равна 11k.
И это только некоторые из них!
К тому же можно комбинировать признаки делимости:
Например, число делится на 6, когда оно чётное и сумма его цифр делится на 3