При якому значенні л вектори 4(n;2;0,5) і 5(5;-2;-2) перпенди кулярні?

ashklyarukovpp94 ashklyarukovpp94    1   30.05.2023 18:02    0

Ответы
katwyn katwyn  30.05.2023 18:03

Два ненульових вектори перпендикулярні, якщо їхній скалярний добуток дорівнює нулю. Тому, щоб знайти, чи є вектори 4(n;2;0,5) і 5(5;-2;-2) перпендикулярними, ми повинні обчислити їхній скалярний добуток і прирівняти його до нуля:

4(n;2;0,5) · 5(5;-2;-2) = 4 * 5 * n + 2 * (-2) * 5 + 0,5 * (-2) * (-2) = 20n - 20 + 1 = 20n - 19

Таким чином, вектори будуть перпендикулярними, коли 20n - 19 = 0, тобто n = 19/20.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика