При одном качании поршнего насоса из сосуда удаляется 1.2% имеющегося в нем воздуха.через сколько качаний насоса в сосуде останется 1/10^16 часть первоначальной массы воздуха?

emotuz60p011ls emotuz60p011ls    3   09.08.2019 01:50    1

Ответы
людмила235 людмила235  14.08.2020 10:49
Первоначальную массу воздуха примем за единицу.
Если удалить 1,2% массы, то останется  100 - 1,2 = 98,8 % массы
После первого качания останется 1 * 98,8/100 = 0,988  от первоначальной массы

То есть, масса воздуха после каждого качания насоса равна 0,988 умножить на массу до качания.
У нас получается геометрическая прогрессия со знаменателем q= 0,988, в которой первый член равен b_1 = 1

Любой член геометрической прогрессии вычисляется по формуле
b_n = b_1*q^{(n-1)}

У нас, показатель степени (n-1)  -это и будет число качаний насоса. Обозначим его как икс, и составим уравнение:
1*0,988^x=1/10^{16}
0,988^x=10^{-16}
x = \log_{0,988}(10^{-16}) =
Чтобы вычислить это выражение, произведём замену основания логарифма (тогда его можно вычислить на любом калькуляторе вычислить десятичный либо натуральный логарифм):
= \frac{\lg(10^{-16})}{\lg0,988} = \frac{\ln(10^{-16})}{\ln0,988} \approx 3052

ответ: через 3052 качания насоса в сосуде останется примерно 1/10^16 от первоначальной массы воздуха.
При одном качании поршнего насоса из сосуда удаляется 1.2% имеющегося в нем воздуха.через сколько ка
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика