по теме: «Теорема Ньютона - Лейбница».
Найдите площадь фигуры, ограниченной линиями: y=–x2+x +3, y=x2–5x–1
Найдите площадь фигуры, ограниченной линиями: xy =4, x + y – 5 = 0.
Найдите площадь фигуры, ограниченной линиями: y = x, y = 2x, хy =1

Unicorn135 Unicorn135    1   13.04.2020 14:52    0

Ответы
Jeka990 Jeka990  27.04.2020 04:44

найдем точки пересечения графиков

приравняем правые части формул

-х²+5=х+3

х²+х-2=0; d=1+4*2=9; x₁,₂=(-1±√9)/2=(-1±3)/2; x₁=-2; x₂=1

Площадь криволинейной трапеции ABECD по формуле Ньютона-Лейбница

               1                                    1

SABECD=∫(-x^2+5)dx=(-(x³/3)+5x)) =-1/3+5-(-(-2)³/3+5(-2))=-1/3+5-8/3+10=

             -2                                  -2

=15-9/3=15-3=12

рассмотрим трапецию ABCD

точки B,C ∈ прямой   y=x+3 ⇒

AB=y(-2)=-2+3=1 ; СD=y(1)=1+3=4; AD=x₂-x₁ =1-(-2)=3

площадь трапеции ABCD

SABCD=(a+b)h/2=(AB+CD)AD/2=(1+4)3/2=5*3/2=7,5

площадь фигуры ограниченной линиями y=-х²+5 и y=х+3

SBEC=SABECD-SABCD=12-7,5=4.5 кв. ед.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика