Первым шагом для составления статистического распределения нам нужно определить, сколько раз каждое значение встречается в выборке. Для этого проанализируем выборку и запишем количество повторений каждого числа:
7: 4 раза
8: 1 раз
9: 2 раза
6: 1 раз
Теперь, когда у нас есть информация о повторениях значений, мы можем построить статистическое распределение. Для этого составим таблицу, в которой будут столбцы "Значение" и "Частота". В столбце "Значение" мы перечислим все числа из выборки, а в столбце "Частота" запишем, сколько раз каждое число повторяется:
Теперь, перейдем к поиску размаха. Размахом называется разница между максимальным и минимальным значениями в выборке. В нашей выборке минимальное значение равно 6 (минимальное число из чисел), а максимальное значение равно 9 (максимальное число из чисел). Поэтому размах равен:
Размах = 9 - 6 = 3
Теперь найдем моду выборки. Модой называется то значение, которое встречается наибольшее количество раз. В нашем случае число 7 встречается чаще всего, а именно 4 раза. Поэтому модой выборки является число 7.
Наконец, перейдем к поиску медианы. Медианой называется среднее значение в выборке, когда она упорядочена по возрастанию. Сначала отсортируем выборку по возрастанию:
6, 7, 7, 7, 8, 9, 9
Теперь, чтобы найти медиану, нужно определить, есть ли в выборке нечетное или четное количество чисел. В нашем случае есть 7 чисел, что нечетное количество. Медиана будет являться серединным значением в выборке, то есть число, стоящее посередине. В нашем случае это число 7.
Наконец, построим полигон. Полигон - это графическое представление статистического распределения. На горизонтальной оси отметим значения из выборки (6, 7, 8, 9), а на вертикальной оси отложим частоту повторений для каждого значения. Затем соединим отмеченные точки прямыми линиями:
Первым шагом для составления статистического распределения нам нужно определить, сколько раз каждое значение встречается в выборке. Для этого проанализируем выборку и запишем количество повторений каждого числа:
7: 4 раза
8: 1 раз
9: 2 раза
6: 1 раз
Теперь, когда у нас есть информация о повторениях значений, мы можем построить статистическое распределение. Для этого составим таблицу, в которой будут столбцы "Значение" и "Частота". В столбце "Значение" мы перечислим все числа из выборки, а в столбце "Частота" запишем, сколько раз каждое число повторяется:
Значение | Частота
----------------
7 | 4
8 | 1
9 | 2
6 | 1
Теперь, перейдем к поиску размаха. Размахом называется разница между максимальным и минимальным значениями в выборке. В нашей выборке минимальное значение равно 6 (минимальное число из чисел), а максимальное значение равно 9 (максимальное число из чисел). Поэтому размах равен:
Размах = 9 - 6 = 3
Теперь найдем моду выборки. Модой называется то значение, которое встречается наибольшее количество раз. В нашем случае число 7 встречается чаще всего, а именно 4 раза. Поэтому модой выборки является число 7.
Наконец, перейдем к поиску медианы. Медианой называется среднее значение в выборке, когда она упорядочена по возрастанию. Сначала отсортируем выборку по возрастанию:
6, 7, 7, 7, 8, 9, 9
Теперь, чтобы найти медиану, нужно определить, есть ли в выборке нечетное или четное количество чисел. В нашем случае есть 7 чисел, что нечетное количество. Медиана будет являться серединным значением в выборке, то есть число, стоящее посередине. В нашем случае это число 7.
Наконец, построим полигон. Полигон - это графическое представление статистического распределения. На горизонтальной оси отметим значения из выборки (6, 7, 8, 9), а на вертикальной оси отложим частоту повторений для каждого значения. Затем соединим отмеченные точки прямыми линиями:
*
*
*-----*
* *
*
---------------------------------
6 7 8 9
Таким образом, мы составили полигон, который наглядно отражает статистическое распределение нашей выборки.