ответ: 121√2 см; 726 см²; 1331 см³
Объяснение: Пусть ребро куба равно - a
Диагональ основания равна √a²+a²=a√2.
Диагональ куба равна a·a√2=a²√2.
Площадь одной грани куба равна а².
Площадь поверхности куба состоит их 6-ти одинаковых граней и равна будет 6а².
Объём куба равен V=а³
Диагональной сечение куба равно а²√2; по условию а²√2=121√2;
а=11 см
Диагональ куба была найдена раньше а²√2=121√2 см.
Площадь поверхности равна 6а²=6·121=726 см².
Объём куба равен V=а³=11³=1331 см³
S=121 см^2
а?см
V=?
S=a^2
a^2=121
a=11см- сторона куба
V=a^3=11^3=1 331см^3
ответ а=11см , объем =1 331см^3
ответ: 121√2 см; 726 см²; 1331 см³
Объяснение: Пусть ребро куба равно - a
Диагональ основания равна √a²+a²=a√2.
Диагональ куба равна a·a√2=a²√2.
Площадь одной грани куба равна а².
Площадь поверхности куба состоит их 6-ти одинаковых граней и равна будет 6а².
Объём куба равен V=а³
Диагональной сечение куба равно а²√2; по условию а²√2=121√2;
а=11 см
Диагональ куба была найдена раньше а²√2=121√2 см.
Площадь поверхности равна 6а²=6·121=726 см².
Объём куба равен V=а³=11³=1331 см³
S=121 см^2
а?см
V=?
S=a^2
a^2=121
a=11см- сторона куба
V=a^3=11^3=1 331см^3
ответ а=11см , объем =1 331см^3