Площа трикутника дорівнює 3, дві його вершини — точки А(3; 1) і В(1; –3). Знайдіть координати третьої вершини, якщо відомо, що вона лежить на осі ординат. * (0;-8)
(0;2)
(4;-2)
(2;-4)
(-8;2)
ВІДПОВІДЬ НЕ ОДНА, А КІЛЬКА!

anarrzayev93p09qob anarrzayev93p09qob    1   26.11.2021 17:15    0

Ответы
R456 R456  02.01.2022 08:58

Відповідь:

Покрокове пояснення:

Знайдемо довжину |ВА|=√(1-3)²+(-3-1)²=√20=2√5

Знайдемо рівняння прямої АВ: (х-1)/2=(у+3)/4 -> 2х-2=у+3 або 2х-у-5=0

Нехай вершина С має координати (0,у⁰), так як С належить осі ординат

Відстань від вершини С до прямої є перпендикуляр, висота трикутника АСВ

S=½AB×h -> h=2S/|AB|=2×3/√20=3/√5

З іншої сторони h=|-y⁰-5|/√(2²+(-1)²)

Прирівняємо висоти

|-y⁰-5|/√5=3/√5

|-y⁰-5|=3

-у⁰-5=3 або -у⁰-5=-3

у⁰=-8 або у⁰=-2

Таким чином вершина С може знаходитися в точках з координатами (0; -2) або (0; -8)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика