Первая труба пропускает на 3 литра воды в минуту меньше, чем вторая. сколько литров воды в минуту пропускает вторая труба, если резевуар объемом 720 литров она заполняет на 6 мин быстрее, чем первая труба заполняет резевуар объемом 810 литров? а. 30 б. 40 в. 20 г. 50 с решением !

YanaTsaruk YanaTsaruk    3   28.09.2019 09:10    1

Ответы
участник78 участник78  09.10.2020 00:20

Пусть х литров в минуту - скорость пропускания второй трубой, а (х-3) литра - скорость первой трубы  

Тогда (720/х) минут - это время заполнения резервуара объемом 720 литров второй трубой, а (810/х-3) - время заплонения резервуара объемом 810 литров второй трубой  

С учетом разницы в 6 минут получаем уравнение  

720/x + 6 = 810/x-3  

Общий знаменатель = x(x-3)  

720(x-3) + 6x(x-3) - 810x = 0  

720x - 2160 + 6x^2 - 18x - 810x = 0  

6x^2 - 108x - 2160 = 0  

x^2 - 18x - 360 = 0  

D = 324 + 1440 = 1764  

x1 = (18-42)/2 = -12 не подходит по условию задачи  

х2 = (18+42)/2 = 30  

ответ: скорость второй трубы равна 30 литров в минуту

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика