z={(a+b)^3=a^3+b^3+3ab(a+b)}=(³√ (9+√17))^3+(³√ (9-√ 17))^3+3*³√ (9+√17)*³√ (9-√ 17)*(³√ (9+√17)+³√ (9-√ 17))-12(³√ (9+√17) +³√ (9-√ 17))=9+√17+9-√ 17+3*³√(81-17)(³√ (9+√17)+³√ (9-√ 17))-12(³√ (9+√17) +³√ (9-√ 17))=18+3*4(³√ (9+√17)+³√ (9-√ 17))-12(³√ (9+√17) +³√ (9-√ 17))=18+12(³√ (9+√17)+³√ (9-√ 17))-12(³√ (9+√17) +³√ (9-√ 17))=18
z={(a+b)^3=a^3+b^3+3ab(a+b)}=(³√ (9+√17))^3+(³√ (9-√ 17))^3+3*³√ (9+√17)*³√ (9-√ 17)*(³√ (9+√17)+³√ (9-√ 17))-12(³√ (9+√17) +³√ (9-√ 17))=9+√17+9-√ 17+3*³√(81-17)(³√ (9+√17)+³√ (9-√ 17))-12(³√ (9+√17) +³√ (9-√ 17))=18+3*4(³√ (9+√17)+³√ (9-√ 17))-12(³√ (9+√17) +³√ (9-√ 17))=18+12(³√ (9+√17)+³√ (9-√ 17))-12(³√ (9+√17) +³√ (9-√ 17))=18